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A b s t r a c t

Introduction: β, β’-iminodipropionitrile (IDPN) is a synthetic nitrile that pro-
duces a permanent movement disorder in rodents. Although IDPN-induced 
vestibular pathology is well documented, the mode of IDPN interaction with 
other organ systems is poorly understood. We examined the behavioral 
signs and histopathological changes in the vestibular labyrinth, brain, liver 
and kidneys of mice exposed to IDPN. 
Material and methods: Adult male SWR/J mice were divided into 2 groups 
of 6 animals each. One group of mice received normal saline (control group) 
and the other group was treated with IDPN (400 mg/kg, i.p.) daily for 7 days. 
Dyskinetic movements including vertical and horizontal head weaving, cir-
cling and backward walking were quantified on days 7, 8 and 9. 
Results: We observed a direct correlation between the severity of IDPN-induced 
behavioral deficits and the degeneration of vestibular hair cells in the crista am-
pullaris of mice. The brain cortex of both groups appeared similar, whereas the 
kidney histopathology revealed mild nephrotoxicity in some of the IDPN-treated 
mice. Administration of IDPN caused severe hepatotoxicity, but the intensity 
of hepatic damage was not correlated with the severity of behavioral deficits. 
Conclusions: Degeneration of vestibular sensory hair cells plays an import-
ant role in the development of IDPN-induced behavioral deficits in mice. Ex-
posure to IDPN also caused severe hepatotoxicity which was independent of 
the behavioral symptoms. These findings could be of potential relevance to 
human health, particularly after the observation that IDPN not only causes 
a movement disorder but also produces acute liver injury.
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Introduction

Occupational and environmental exposure to synthetic nitriles is of 
potential relevance to human health. β, β’-iminodipropionitrile (IDPN) is 
a  synthetic nitrile that produces an irreversible behavioral syndrome in 
rodents, designated as ECC syndrome (excitation with choreiform and cir-
cling movements), and characterized by repetitive head movements, ret-
ropulsion, circling, hyperactivity, and swimming deficits [1, 2]. It has been 
observed that not only IDPN but also several other nitriles of industrial 
application such as crotononitrile, allylnitrile and acrylonitrile are able to 
produce motor deficits in experimental animals [3, 4]. However, within the 
nitrile compounds, IDPN, allylnitrile, and cis-crotononitrile produce the ECC 
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syndrome in rodents, whereas trans-crotononitrile 
and hexadienenitrile induce a different kind of syn-
drome, characterized by faltering movements [5]. 
Thus, nitriles cause two distinct types of motor syn-
dromes through either vestibular hair cell degen-
eration or neuronal degeneration [5, 6]. Moreover, 
exposure to IDPN has also been shown to cause 
olfactory [7], ocular [8], developmental [9] and re-
productive [10] toxicities in rats. However, the ef-
fects of IDPN on two important vital organs, liver 
and kidney, have not been evaluated. 

In this study, we examined IDPN-induced be-
havioral deficits in mice and observed the histo-
logical changes in the crista ampullaris, brain, liver 
and kidneys of mice treated with IDPN as com-
pared to normal tissues. 

Material and methods

Animals and treatment

Adult male SWR/J mice weighing 30–35 g were 
used in this study. The animals were housed in 

polycarbonate cages with sawdust bedding, kept 
in a temperature-controlled room and maintained 
on 12-h light/dark cycles. Standard laboratory 
food and tap water were freely available to the 
animals throughout the study. The animals were 
divided into 2 groups of 6 animals each. Control 
mice received normal saline whereas the IDPN 
group was treated with IDPN (400 mg/kg, i.p.) dai-
ly for 7 days. The animals were sacrificed on day 9 
and samples of the cochlea, brain, liver and kidney 
were collected for histopathology. The experimen-
tal protocol was approved by our Institutional Eth-
ics Committee. 

Behavioral analysis

All the animals were carefully observed for any 
behavioral abnormality before the daily adminis-
tration of IDPN. The animals were placed individ-
ually in an observation chamber (50 cm × 50 cm)  
and were observed for dyskinetic movements 
including vertical (retrocollis) and horizontal (lat-
erocollis) head weaving, circling and backward 
walking for a period of 2 min, as described earlier  
[11, 12].

Histopathology

The animals were subjected to cardiac perfu-
sion with saline followed by 2.5% glutaraldehyde 
buffered with 0.2 M phosphate buffer solution 
(pH 7.4) under ethyl ether anesthesia. The tempo-
ral bones were quickly removed and postfixed in 
10% neutral buffered formalin for 15 h. The bony 
labyrinth was decalcified by placing it in the de-
calcifying agent Cal-Ex (Fisher Scientific, USA) for 
48 h. The decalcified specimens were processed 
overnight for dehydration, clearing and impregna-
tion using an automatic tissue processor (Sakura, 

Figure 1. Time-course behavioral signs in IDPN- 
treated mice

Values are means of 6 animals ± SEM.
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Figure 2. Intensities of behavioral deficits in individual animals of IDPN-treated group

Values are means of 3 days ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 versus animal no. 6 (animal with least symptoms).
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Figure 3. Light microscopic observation of crista ampullaris from control and IDPN-treated mice. Individual images 
correspond to individual animals in respective groups. Magnification 400×

Control

IDPN

Japan). The specimens were embedded in paraffin 
blocks using an embedding station (Sakura, Japan) 
and serial sections of 5 mm thickness were cut us-
ing a  microtome (Leica-RM2245, Germany) and 
stained with 1% toluidine blue for light micros-

copy observations. Other organs including brain, 
liver and kidney were fixed with 10% neutral 
buffered formalin for at least one day. Tissue pro-
cessing and embedding were performed as above, 
whereas the thickness of specimens was set at  
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4 µm and an autostainer (Leica 5020, Germany) 
was used for hematoxylin and eosin staining. 

Statistical analysis

The mean values between control and treat-
ed groups were compared by using independent 
samples t-test with the help of the SPSS package. 
Values of p < 0.05 were considered as statistically 
significant. 

Results and discussion

The onset of IDPN-induced behavioral deficits 
was on day 7 (Figure 1). The intensities of retro-
collis and circling behaviors increased with time, 
whereas laterocollis and back walking did not 
show a  time-course increasing trend in their in-

tensities. Animal no. 4 showed the highest severi-
ty score followed by animals 2, 1, 3 and 5, whereas 
animal no. 6 had mild behavioral deficits in the 
form of retrocollis only (Figure 2). The results of 
histopathology of the vestibular organ showed 
that IDPN exposure caused degeneration of ves-
tibular sensory hair cells in the crista ampullaris, 
whereas the crista of control mice showed normal 
sensory epithelium with intact hair bundles (Fig-
ure 3). Our findings are in agreement with previ-
ous reports [13–16] suggesting a close association 
between IDPN-induced neurobehavioral toxicity 
and degenerative changes in the crista ampullaris, 
including cytoplasmic vacuolation, detachment of 
hair cell-nerve terminal contacts, and loss of syn-
aptic densification. Seoane et al. [17] compared 
the mode of hair cell degeneration in rats exposed 

Control

IDPN

Figure 4. Light microscopic observation of brain cortex from control and IDPN-treated mice. Individual images 
correspond to individual animals in respective groups. Magnification 400×
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Control

IDPN

Figure 5. Light microscopic observation of liver sections from control and IDPN-treated mice. Individual images 
correspond to individual animals in respective groups. Magnification 400×

to acute and sub-chronic dosages of IDPN and 
concluded that necrosis was most evident when 
the intensity was at its highest (acute exposure), 
whereas extrusion predominated when the inten-
sity was at the lowest end of the scale (sub-chron-
ic exposure).

Animal no. 4 with the highest severity score of 
behavioral deficits showed almost complete loss 
of hair cells in the sensory epithelium with no 
hair bundles seen (Figure 3). Animals 1, 2 and 3 
(with moderate behavioral deficits) showed mild 
degeneration of hair cells and partial detachment 
of hair bundles. The sensory epithelia of animal 
no. 6 (with mild behavioral deficits) showed little 
degeneration of hair cells with intact hair bundles 
(Figure 3). These findings indicate a direct correla-
tion between the severity of behavioral deficits 

and the cellular damage in the crista ampullaris 
of IDPN-treated mice. Khan et al. [18] also report-
ed a  direct association between the severity of 
IDPN-induced behavioral signs and the extent of 
vestibular hair cell degeneration, after administer-
ing graded doses of IDPN in rats of different age 
groups. Moreover, drugs that alleviated IDPN-in-
duced behavioral deficits also reduced vestibular 
hair cell degeneration [19, 20], whereas the toxic 
interaction of drugs with IDPN synergistically ag-
gravated both behavioral and vestibular toxicities 
[11, 15, 16, 21].

The results of brain histopathology did not re-
veal any prominent changes in the brain cortex 
of mice treated with IDPN as compared to con-
trols (Figure 4). Several biochemical studies have 
shown that IDPN produces significant alterations 
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Control

IDPN

Figure 6. Light microscopic observation of kidney sections from control and IDPN-treated mice. Individual images 
correspond to individual animals in respective groups. Magnification 400×

in the brain neurotransmitters including dopa-
mine [22], serotonin [23–25] and norepinephrine 
[26]. IDPN caused time- and dose-dependent 
increases in glial fibrillary acidic protein in the 
pons-medulla, midbrain, cerebral cortex and ol-
factory bulbs of rats; of these areas, the cortex 
and olfactory bulbs showed the highest effects 
[27]. Exposure to IDPN increased the expression 
of frontal cortical and thalamic vasoactive intes-
tinal peptide, and striatal dynorphin, enkephalin 
and substance P [28]. Several studies have also 
reported significant alterations in the indices of 
oxidative stress and lipid peroxidation in brain 
of IDPN-treated rats [29–33]. The findings of the 
above studies indicate that IDPN produces signifi-
cant biochemical and molecular alterations in the 
brain, but the neuronal morphology is not affect-

ed to such an extent as to be determined by light 
microscopy. 

The results of liver histopathology showed  
severe hepatotoxicity in IDPN-treated mice (Fig-
ure 5). The prominent signs of hepatic damage  
were vacuolization of cytoplasm, distorted sinu-
soids, infiltration of mononuclear cells and ne-
crosis. The severity of hepatic damage in IDPN- 
treated mice (Figure 5) was independent of the 
magnitude of vestibular hair cell degeneration 
in respective animals (Figure 3). It was reported 
previously that pretreatment with hepatotox-
ic dosages of carbon tetrachloride significantly 
increased the toxicity of IDPN, suggesting that 
hepatic transformation of IDPN to a  toxic me-
tabolite [34] may not be required for the man-
ifestation of IDPN-induced neurotoxicity, but 
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instead may be involved in the detoxification of 
this compound [35]. Structural changes in rat liv-
er have also been observed following subchronic 
exposure of IDPN [36]. Histopathological exam-
ination of kidney sections showed mild nephro-
toxicity in animals 3, 4 and 5, in the form of mild 
tubular dilatation and vacuolation in glomeruli 
(Figure 6). A previous biochemical study in rats 
did not find any difference in blood urea nitro-
gen and serum creatinine levels between control 
and IDPN treated groups, suggesting that vestib-
ulotoxic doses of IDPN do not impair the renal 
function of rats [15].

In conclusion, the severity of IDPN-induced 
behavioral deficits in mice is directly correlated 
with the degeneration of vestibular sensory hair 
cells in the crista ampullaris. Exposure to IDPN 
also caused severe hepatotoxicity in mice, but 
the extent of hepatic damage was not correlat-
ed either with the vestibular hair cell degenera-
tion or with the intensity of behavioral deficits. 
Although this study was conducted in mice, the 
findings could be of potential relevance to hu-
man health, particularly after the observation 
that IDPN not only causes movement disorder 
but also produces acute liver injury. We recom-
mend that environmental or occupational ex-
posure to synthetic nitriles should be carefully 
monitored and that subjects at risk be evaluated 
not only for neurological symptoms but also with 
the liver function test.
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